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This paper presents the numerical modelling of heat transfer in two-dimensional metal films.
The mathematical model of the problem analyzed consists on fuzzy coupled lattice Boltz-
mann equations for electrons and phonons supplemented by adequate boundary-initial con-
ditions. In this model, the standard two-dimensional 9-speed lattice (D2Q9) is used. The
main concept behind this work was to use the fuzzy lattice Boltzmann method (FLBM)
to analyze the thermal process proceeding in a thin metal film. The application of α-cuts
allows one to simplify mathematical operations in the fuzzy numbers set. Additionally, the
trapezoidal approximation of fuzzy relaxation times and boundary conditions is considered.
In the final part of the paper, the results of numerical computations are shown.
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Nomenclature

e – energy density [J/m3]
G – electron-phonon coupling factor (characterizes energy exchange between car-

riers) [W/(m3K)]
I0 – peak power intensity of laser pulse [W/m2]
kb – Boltzmann constant [J/K]
ne – electron density [1/m3]
r – radius of laser beam
Q – energy source related to unit volume [W/m3]
Q′ – power density deposited by external source function associated with laser ir-

radiation [W/m3]
t,∆t – time and time increment [ps]
T – temperature [K]
v – frequency-dependent propagation speed [m/s]
X,Y – spacial coordinate corresponding to x and y axis [nm]
∆x,∆y – spacial increment corresponding to x and y axis [nm]
β – laser pulse parameter [1/s]
δ – absorption coefficient [1/nm]
εF – Fermi energy [J]
η – number density of oscillators [1/m3]
θD – Debye temperature [K]
τr – relaxation time [ps]

Subscripts: e – electron, ph – phonon; superscript 0 – equilibrium; and ·̃ – fuzzy
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1. Introduction

A very important problem is the correct estimation of heat transfer processes occurring in thin
metal films subjected to an ultrafast laser pulse in microtechnical applications. Extreme tempe-
rature gradients, very short duration of the laser irradiation process and small dimensions of the
domain considered make it impossible to use the macroscopic heat conduction equation based
on Fourier’s law (Bejan and Kraus, 2003). It is possible to introduce a relaxation time, i.e. delay
time (time interval) between the heat flux and temperature gradient, and obtain a generalization
of the Fourier law called the Cattaneo-Vernotte equation (Cattaneo, 1958). Another possibility
is the dual phase lag equation (DPLE) containing two delay times: relaxation time of the heat
flux vector and relaxation time of the temperature gradient. This equation contains a second
order time derivative and a higher order mixed derivative in time and space (Majchrzak and
Mochnacki, 2009, 2014; Majchrzak and Kałuża, 2015; Mochnacki and Paruch, 2013; Zhang, 2007;
Chen et al., 2004). The two-temperature model (hyperbolic or parabolic) consisting of equations
describing temporal and spatial evolution of lattice and electrons temperatures together with
lattice and electron heat fluxes can also be used to solve this type of heat transfer problems (Ho
et al., 2003; McDonough et al., 2006; Majchrzak and Dziatkiewicz, 2015; Tzou, 1997).
In the paper, the fuzzy lattice Boltzmann method (Piasecka-Belkhayat and Korczak, 2014a,b)

is used to analyze thermal processes occurring in thin metal films subjected to an ultrafast laser
pulse. In the engineering practice, thermal processes are generally analyzed with the assumption
that the equations describing the analyzed process and material parameters are deterministic.
The solution of the classical lattice Boltzmann method (LBM) does not give an exact image
of natural phenomena because some of material parameters are determined experimentally. It
seems natural to consider fuzzy material parameters occurring in the mathematical description.
The application of the FLBM allows one to include in the mathematical model “uncertainty”
associated with material parameters. Unlike exact sets, where the membership function can
take only two values: 0 or 1, in the fuzzy set theory a partial membership to the fuzzy set is
considered. In the paper, fuzzy values of relaxation times and boundary conditions are taken into
account. The closed intervals called α-cuts and an algebraic extension of the classical interval
arithmetic called the directed interval arithmetic were used to solve the problem considered
(Piasecka-Belkhayat and Korczak, 2016; Mochnacki and Piasecka-Belkhayat, 2013). The use of
directed interval arithmetic allows one to obtain narrower temperature intervals than in the case
of the classical interval arithmetic, while the α-cuts make it possible to perform mathematical
operations in a set of “normal” intervals, which is much simpler. Trapezoidal fuzzy numbers
along with triangular numbers are the most commonly used fuzzy numbers. It is possible to use
a non-linear membership function (for example Gaussian membership function) but this does
not have a significant impact on the obtained solution.

During laser-metal interaction, the energy transfer process of excited electrons to phonons
via coupling between both energy carriers can be observed. The Boltzmann transport equations
transformed into a form using carrier energy densities for the coupled model can be written in
the following form

∂ee
∂t
+ ve · ∇ee = −

ee − e0e
τre

+Qe
∂eph
∂t
+ vph · ∇eph = −

eph − e0ph
τr ph

+Qph (1.1)

where e means electrons and ph means phonons.

The above energy equations must be supplemented by appropriate boundary and initial
conditions.

The electron and phonon energy densities depending on the lattice temperatures are calcu-
lated using the formulas (Mochnacki and Paruch, 2013)
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ee(Te) =
(
ne
π2

2

k2b
εF

)
T 2e eph(Tph) =

(9ηphkb
θ3D

θD/Tph∫

0

z3

exp(z)− 1 dz
)
T 4ph (1.2)

while the electron and phonons source functions defined per unit volume are expressed by the
following equations (Ghai et al., 2005; Venkatakrishnan et al., 2002; Lee et al., 2011)

Qe = Q
′ −G(Te − Tph) Qph = G(Te − Tph) (1.3)

2. The fuzzy Boltzmann transport equation

Assuming fuzzy values of parameters occurring in equations (1.1), a fuzzy version of the Boltz-
mann transport equations is obtained (Ghai et al., 2005)

∂ẽe(t, x, y)

∂t
+ ve · ∇ẽe(t, x, y) = −

ẽe(t, x, y)− ẽ0e(t, x, y)
τ̃r e

+ Q̃e(t, x, y)

∂ẽph(t, x, y)

∂t
+ vph · ∇ẽph(t, x, y) = −

ẽph(t, x, y)− ẽ0ph(t, x, y)
τ̃r ph

+ Q̃ph(t, x, y)

(2.1)

The fuzzy values of the electron and phonon temperatures for their equivalent energy densities
are given by the formulas

T̃e =

√√√√ẽe(T̃e)
/(
ne
π2

2

k2b
εF

)
T̃ph =

4

√√√√√√ẽ(T̃ph)θ3D

/(
9ηkb

θD/T̃
f−1

ph∫

0

z3

exp(z)− 1 dz
)
(2.2)

whereas the fuzzy electron and phonon energy sources are calculated from the following formulas
(Ghai et al., 2005)

Q̃e(t, x, y) = Q
′(t, x, y)−G[T̃e(t, x, y)− T̃ph(t, x, y)]

Q̃ph(t, x, y) = G[T̃e(t, x, y)− T̃ph(t, x, y)]
(2.3)

The source component Q′(t, x, y) appearing in the electron energy equation determining tem-
porary changes of the laser output pulse can be approximated using the exponential function
defined as follows (Chen et al., 2006)

Q′(t, x, y) = I0δ exp(−δy − βt) exp
(
−2x

2

r2

)
(2.4)

In the present paper, the D2Q9 (two-dimensional nine-velocity lattice type) has been em-
ployed. For this lattice model, the discrete velocities for electrons and phonons (Fig. 1) can be
expressed as

vd =





[0, 0] for d = 0
[
cos (d−1)π2 , sin

(d−1)π
2

]
for d = 1, . . . , 4

√
2
[
cos
(
(d−5)π
2 + π4

)
, sin
(
(d−5)π
2 + π4

)]
c for d = 5, . . . , 8

(2.5)

where c = ∆x/∆t = ∆y/∆t is the lattice speed uniform in both directions, the time step
∆t = tf+1 − tf is recommended to be shorter than the carriers relaxation time (Escobar et al.,
2006).
The main steps of numerical analysis summarizing the presented method are shown in the

flow chart below (Fig. 2).
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Fig. 1. Directions of carriers velocities in the two-dimensional 9-speed (D2Q9) lattice Boltzmann model

Fig. 2. Flow chart of the main steps in the algorithm

3. Results of computations

As a numerical example, the heat transport in a gold thin film of dimensions 1000 nm×200 nm
has been analysed. The following input data have been introduced: q̃b1 = q̃b2 = q̃b3 = 0̃W/m

2,
fuzzy trapezoidal boundary temperature T̃b4 = (285, 292.5, 307.5, 315) K, T0 = 300K, ∆t =
0.01 ps, fuzzy trapezoidal relaxation times for phonons τ̃ph = (τph− 0.05τph, τph− 0.025τph, τph+
0.025τph, τph + 0.05τph) and electrons τ̃e = (τe − 0.05τe, τe − 0.025τe, τe + 0.025τe, τe + 0.05τe),
r = 160 nm, the other material and laser properties are defined in Table 1. In the paper, the
fuzzy heat fluxes are calculated numerically with the use of the rules of fuzzy analysis.
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Table 1. Material and laser properties

τph τe θD ne(·1028) εF I0(·1013) β(·1013) δ(·1013)
[ps] [ps] [K] [1/m3] [eV] [W/m2] [1/s] [1/m]

Au 0.8 0.04 170 5.9 5.53 2 0.5 7.55

Fig. 3. Fuzzy electrons heating curves for chosen nodes for α = 0.5

Fig. 4. Lattice with marked analysed nodes
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Figure 3 illustrates the fuzzy electrons heating curves obtained for α = 0.5 in the nodes:
(100, 80) – 1, (100, 100) – 2 and (100, 120) – 3 (see Fig. 4). For each node we have two curves,
they are graphs of the beginnings and ends of α-cuts of temperatures, which are intervals.

In the second example, the temperature distribution for nodes with the OX coordinate equal
to 600 nm was analyzed (Fig. 6). Results after 0.5 ps, 0.7 ps and 0.9 ps also for α = 0 and α = 0.5
are shown in Fig. 5. What can be seen, for bigger alpha we have narrower temperature intervals.

Fig. 5. Fuzzy electron temperature distribution for α = 0 and α = 0.5

Fig. 6. Lattice with marked analysed nodes
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The third example (Fig. 7) illustrates the result of calculations obtained at one node
(500, 60) nm after 0.9 ps, which is a trapezoidal fuzzy number with marked particular α-cuts.

Fig. 7. Trapezoidal fuzzy number – temperature at the chosen node (500, 60)nm after 0.9 ps

4. Conclusions

In this study, the numerical modelling of heat transfer in two-dimensional metal films has been
considered. The main idea of this article was to include in the mathematical model fuzzy values
of some parameters, for example relaxation times and boundary conditions.

The fuzzy lattice Boltzmann method has been applied to solve the problem discussed defined
in this way. It should be also pointed out that the α-cuts have been used in order to avoid
complicated calculations in the set of fuzzy numbers. The application of α-cuts allows one to
consider fuzzy numbers as interval numbers and use simpler interval arithmetic. The trapezoidal
approximation of fuzzy relaxation times and boundary conditions has been considered. As shown
in Fig. 6, the bigger values of the parameter α cause the narrower temperature interval, whereas
for α equal to 1 the width of the temperature interval is equal to 0.

The presented fuzzy LBM allows one to find the numerical solution in the fuzzy form, which
is particularly important in the case of experimentally estimated parameters, e.g. the relaxation
time. It is worth to emphasize that the classical error analysis is not used in numerical methods
based on the interval or fuzzy arithmetic. However, a very effective tool to control the width
of intervals obtained as a result of calculations is the sensitivity analysis (Piasecka-Belkhayat
and Korczak, 2017). Another important aspect is that the results obtained with the use of the
classical lattice Boltzmann method for exact values should be included in the middle of intervals
obtained with the use of fuzzy LBM (Piasecka-Belkhayat and Korczak, 2014).

A. Appendix – fuzzy arithmetic

In this paper, all calculations have been performed using the fuzzy set theory. This kind of
arithmetic is not so common in mathematical modelling, especially in solving heat transfer
problems, and that is the reason why some of the rules and definitions of the fuzzy arithmetic
ground must be explained (Hanss, 2005).
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At the beginning, it is necessary to introduce the definition of a fuzzy set. Let the fuzzy set
C̃ be a nonempty subset of the universal set X (C̃ ⊆ X), which can be defined by a set of pairs
consisting of elements x ∈ X and a characteristic function µ

C̃
(x) called a membership function

of the form

C̃ = {(x, µ
C̃
(x));x ∈ X} (A.1)

where the membership function µ
C̃
(x) can be formally expressed as

µ
C̃
(x) : X→ [0, 1] (A.2)

In the theory of fuzzy sets, each element from the set is mapped to the interval [0, 1] by a
membership function. The interval [0, 1] means real numbers between 0 and 1 (including 0, 1).
Consequently, a fuzzy set is a “vague boundary set” compared with a crisp set.
For every x ∈ X, three types of membership to the fuzzy set C̃ can be defined (see Table 2).

Table 2. Membership to the fuzzy set

µ
C̃
(x) Remark

1 full membership to the fuzzy set, x ∈ C̃
0 lack of membership to the fuzzy set, x /∈ C̃
(0, 1) partial membership to the fuzzy set

Among the infinite quantity of possible fuzzy sets that can be treated as fuzzy numbers, some
types of membership functions are of particular importance. In general, arithmetic operations
on fuzzy numbers are very complicated. One of the ways to avoid difficult arithmetic operations
performed on fuzzy numbers is to apply α-cuts. The concept of α-cuts is one of the most
important concepts of fuzzy sets. The α-cut of a set C̃ in a universal set can be defined as a
crisp set composed of members whose membership is not less than α for every α ∈ [0, 1] (Otto
et al., 1993)

C̃α = {x ∈ X : µ
C̃
(x)  α} (A.3)

It should be pointed out that the value α is arbitrary, and the characteristic function of the
α-cut set can be defined as follows

χ
C̃α
=

{
1 for µ

C̃
(x)  α

0 for µ
C̃
(x) < α

(A.4)

It is worth to emphasise that every fuzzy set C̃ is exactly a sum of all its α-cuts

C̃ =
∑

α∈[0,1]

αC̃α (A.5)

where αC̃α means a fuzzy set with the following membership function

µ
αC̃α
=

{
α for x ∈ C̃α
0 for x /∈ C̃α

(A.6)

Taking into account a membership function of a linear type, trapezoidal fuzzy numbers
together with triangular numbers are the most commonly used fuzzy numbers in numerical
analysis. In this article, trapezoidal fuzzy numbers have been applied to find a numerical solution
to the Boltzmann transport equations in the fuzzy form.
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A membership function of a trapezoidal fuzzy number ã can be defined as follows (Giachetti
and Young, 1997)

µã(x) =






1

σ
(x− x0 + σ) x0 − σ ¬ x ¬ x0
1 x0 ¬ x ¬ y0
1

β
(x− y0 + β) y0 ¬ x ¬ y0 + β
0 otherwise

(A.7)

where x0 and y0 are two defuzzifiers – the left and the right one, respectively, σ and β (σ > 0,
β > 0) are left and right fuzzinesses. A trapezoidal fuzzy number can be written as
ã = (x0, y0, σ, β) and illustrated as in Fig. 8.

Fig. 8. Trapezoidal fuzzy number

Due to the fact that every α-cut is a closed interval of real numbers, the mathematical
operations can be defined using the rules of the directed interval arithmetic.

The α-cut of a fuzzy number ã can be written as (Guerra and Stefanini, 2005)

∀α ∈ [0, 1] ãα = [a
−

α , a
+
α ] (A.8)

with the conditions

1. a− : α→ a−α ∈ R

2. a+ : α→ a+α ∈ R

3. a−α ¬ a+α
(A.9)

where a−(a+) : [0, 1] → R is a limited, monotonic, increasing (decreasing) function for every
α ∈ [0, 1].
Finally, every fuzzy number can be defined as a sum of all its own α-cut

ã =
∑

α∈[0,1]

ãα (A.10)

while the α-cut of a trapezoidal fuzzy number ã = (x0, y0, σ, β) can be expressed as

∀α ∈ [0, 1] ãα = [x0 − (1− α)σ, y0 + (1− α)β] (A.11)

For the α-cut of two fuzzy numbers ã and b̃, the mathematical operations can be defined as
in Table 3 (Piasecka-Belkhayat, 2011).
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Table 3. Mathematical operations

Name of operation Formula

addition (ã+ b̃)α = [a
−

α + b
−

α , a
+
α + b

+
α ]

subtraction (ã− b̃)α = [a−α − b+α , a+α − b−α ]

multiplication by
kãα = [min{ka−α , ka+α },max{ka−α , ka+α }]

a scalar (k ∈ R)

multiplication (ãb̃)α = [min{a−α b−α , a−α b+α , a+α b−α , a+α b+α },max{a−α b−α , a−α b+α , a+α b−α , a+α b+α }]

inverse (
1
ã

)

α
=
[
1
a+α
, 1
a−α

]

α(0 /∈ [a−α , a+α ])

division (
ã

b̃

)

α
=
[
min
{
a−α
b−α
, a
−

α

b+α
, a
+
α

b−α
, a
+
α

b+α

}
,max

{
a−α
b−α
, a
−

α

b+α
, a
+
α

b−α
, a
+
α

b+α

}]

α(0 /∈ [b−α , b+α ])
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